

The First Stage of Star Formation: From Cores to Disks

Neal J. Evans II

with much help from

Lori Allen, Tom Megeath, Debbie Padgett, Ed Churchwell, Amanda Heiderman, Mike Dunham, Miranda Dunham, Tom Robitaille

Some Star Formation Surveys

- GLIMPSE Legacy survey of Milky Way
 - Combine with other surveys, such as BGPS
- MIPSGAL Legacy survey of Milky Way
- GTO, GO studies of clusters, near and far
 - Orion, nearby clusters, W5, Cyg-X, ...
- Taurus Legacy project
 - Nearly complete survey of Taurus
- Cores to Disks (c2d) Legacy Project
 - Surveys of 7 nearby "large" clouds and many small ones
 - Complementary molecular line and dust continuum maps
- Gould Belt Legacy Project
 - Surveys of 12 nearby "large" clouds to complete census

GLIMPSE: The Big Picture

Blue is 3.6 microns, green is 4.5 microns, red is 8 microns

MIPSGAL+GLIMPSE

Blue is 3.6, green is 8 microns, and red is 24 microns

Bubbles, EGOs, and Reds

G28.83-0.25 (N49) 8(R), 4.5(G), 3.6(B) μ m

D=5.7 \pm 0.6 kpc $N_{UV} \ge 7.8 \times 10^{48} \text{ s}^{-1}$ =>06V or hotter Diam~5 pc

- 1. Bubbles all over plane, esp. seen at 8 microns.
- 2. Extended GreenObjects (EGOs):300 cataloged
- 3. Warm dust inside bubbles
- 4. Embedded Red Sources

E. Churchwell: GLIMPSE+MIPSGAL

Bubbles, EGOs, and Reds

N49 (4.5, 8.0, 24µm)

D=5.7 \pm 0.6 kpc $N_{UV} \ge 7.8 \times 10^{48} \text{ s}^{-1}$ =>06V or hotter Diam~5 pc

- 1. Bubbles all over plane, esp. seen at 8 microns.
- 2. Extended GreenObjects (EGOs):300 cataloged
- 3. Warm dust inside bubbles
- 4. Embedded Red Sources

E. Churchwell: GLIMPSE+MIPSGAL

Red Sources and Dense Clumps

M. K. Dunham and T. Robitaille, in prep.

GLIMPSE: Blue (3.6 μm), Green (5.8 μm), Red (8 μm)

Bolocam Galactic Plane Survey (BGPS) of 1mm continuum (Contours)

Blue circles: Red sources associated with BGPS sources

Yellow: not associated

GTO and **GO** Studies of Clusters

- GTO Clusters (P. Myers)
- Cep OB3, Mon R2 (R. Gutermuth, J. Pipher)
- W5 (X. Koenig, L. Allen)
- Orion (T. Megeath)
- Bright Rimmed Clouds (L. Allen)

Surveys of Nearby Clouds and Clusters

20 nearby molecular clouds (blue circles)

35 young stellar clusters (red circles)

90% of known stellar groups and clusters within 1 kpc (complete to ~ 0.1 M_{Sun})

+ Several massive sf complexes at 2-3 kpc (complete to ~1.0 M_{Sun})

Spitzer 160 µm 44 sq. deg Map of Taurus

Padgett et al. in prep., Terebey et al. in prep.

New Taurus Objects

- 148 new potential Taurus members.
- Spectroscopy on about half the sample:
 - 34 new members, +4 probable new members, +9 possible new members = 47 new (with various shades of confidence)
 - 7 extragalactic
 - 1 background Be star(!)
 - 60 stars needing more follow-up, +33 needing any follow-up
- Increase of ~20% in Taurus membership in our mapped region, and still more could be confirmed.
- Most new members are Class II M stars, in close (projected) proximity to the previously-identified Taurus members.
- Also found planetary nebulae, background giants, carbon stars, galaxies, and AGN with colors like YSOs.

Star Formation Questions

- Where do stars form in large molecular clouds?
- What determines the IMF?
- How long do various stages of the process take?
- Do any theories explain the data?
- How efficient is star formation?
- Do exgal prescriptions work on small scale?
- The key is to have a large, uniform sample
 - Survey large, nearby clouds with Spitzer
 - c2d+Gould Belt (19 clouds with identical procedures)
 - Taurus, nearby clusters (not identical)

Where do Stars Form?

Gray is extinction, red dots are YSOs, contours of volume density (blue is 1.0 M_{sun} pc⁻³; yellow is 25 M_{sun} pc⁻³)

Degree of Clustering Varies

T. Megeath et al. in prep.

Degree of Clustering Varies

T. Megeath et al. in prep.

YSOs, Dense Cores are Clustered

- Only 9% of YSOs in c2d outside contour of 1 M_{sun} pc⁻³
- Distributed YSOs are more evolved
- Distributed population could come from dispersed clusters [t_{cross} ~ t(ClassII) ~ 2 Myr]
- Densities of YSOs are high in clusters
 - **But < 0.1** that in Orion, ...
- Dense cores are even more clustered than YSOs

About Half are in Large Clusters

The Initial Mass Function

- Distribution of Stars over mass
 - The "Initial Mass Function" (IMF)
 - For high masses, $dN/dM \sim M^{-2.4}$
 - Flattens and rolls over below 1 M_{sun}
- We can constrain Core Mass Function
 - 3 Clouds with Bolocam maps
 - Starless cores only
 - Masses from 1 mm dust
 - Absolute uncertainties substantial
 - But shape is not as sensitive

Combined starless core mass distribution

Masses:

 $T_D = 10K$ $\kappa_v = 0.0114 \text{ cm}^2/\text{g}$

- Best fit power law: p ~ 2.5 or Lognormal
- IMF:
 Salpeter (p~2.4)
 Chabrier 03
 (p~2.7 M>1M_☉)

⇒ "Not inconsistent" with a scenario in which stellar masses are determined during core formation. If so, >25% goes into star.

Enoch et al. 2008

Evolution

- Various Stages in the evolution
 - Associated with Classes based on SED
- Durations in Classes inferred from numbers
- Previous studies based on small numbers
 - Typically 50 to 100 objects

Standard Evolutionary Scenario

Note axis change!

Standard Evolutionary Scenario

Note axis change!

Scenario for star- and planet formation

Formation planets

 $t=10^6-10^7 \text{ yr}$

Solar system

 $t>10^8 \text{ yr } (?)$

Scenario for star- and planet formation

Formation planets

 $t=10^6-10^7 \text{ yr}$

Solar system

 $t>10^8 \text{ yr } (?)$

Previous Work

- Previous estimates for timescales
 - $t(I) \sim t(II) \sim 0.4 \text{ Myr}$
 - In Ophiuchus (Wilking et al. 1989)
 - $t(I) \sim t(flat) \sim 0.1$ -0.2 Myr; Class II 1-2 Myr
 - In Taurus (Kenyon and Hartmann 1995)
 - Note t(II) ~ 10 t(I)
 - $t(0) \sim 0.01$ Myr (Andre, Oph) Rapid early accretion
 - Or $t(0) \sim 0.1$ Myr (Visser, larger sample)
 - Issues
 - Small number statistics!
 - Differences between clouds!

19 clouds, 3158 YSO

I:	$\alpha \ge 0.3$	14%
Flat:	$-0.3 \le \alpha < 0.3$	9%
II:	$-1.6 \le \alpha < -0.3$	47%
III:	α < -1.6	30%

IF Time is the only variable AND
IF star formation continuous for t > t(II)
AND
IF Class II lasts 2 Myr,
THEN

Class I lasts 0.57 Myr
Flat lasts 0.38 Myr
(longer than most previous estimates)

Caveats:

GB clouds extincted (decrease by \sim 0.1 Myr)
Class III census incomplete
Class III not included in timescale
Depends on $how \alpha$ is calculated
Class 0 mixed with Class I

Timescales for earlier stages

- For 3 clouds with millimeter maps (Enoch08)
 - Use T_{bol} to separate Class 0 from I
 - Absence of IR source to say starless
 - Largest sample to date: 200 cores
 - N(0) = 0.44N(I), so t(0) = 0.16 Myr
 - Not consistent with fast, early infall (Andre et al.)
 - Except Oph: 0.04 Myr, Oph was basis of low t(0)
 - Oph has faster evolution or not continuous
 - N(SL) = 0.8 N(0+I), so $t(SL) \sim 0.46 Myr$
 - After $< n > > 2 \times 10^4 \text{ cm}^{-3}$
 - $t(SL) \sim 3 t_{ff}$; between predictions of fast and slow

Prestellar core lifetime

- n(H₂) measured in 10⁴ AU aperture
- Estimated τ
 - ⇒ Cores not in free-fall
 - ⇒ Not highly subcritical
- Lifetime decreases at higher densities

Comparison to Shu model

- Assume inside-out collapse at 0.19 km/s
 - Sound speed at 10 K
- In 0.57/2 Myr, $r_{inf} = 0.057$ pc
 - Consistent with some sizes
 - Mean separation in clusters 0.072 pc (Gutermuth)
- At $dM/dt = 1.6 \times 10^{-6} M_{sun}/yr$, $M_* \sim f 0.90 M_{sun}$
 - If $f \sim 0.3$, get $0.27 M_{sun} \sim modal mass$
- Consistent with assumptions, most data
- Picture holds together, except...

The Luminosity Problem!

M. M. Dunham et al. in prep.

Many are under-luminous

Predicted L = GM(dM/dt)/R= 1.6 L_{sun} for standard (Shu) accretion onto M = 0.08 M_{sun}, R = 3 R_{sun}. Most (59%) are below this. M. M. Dunham et al. in prep

With 2D, Outflows, Episodic Accretion

and the BLT

M. M. Dunham et al. in prep

Estimating Star Formation Efficiency

- Much more complete sample, uniform analysis
- Complete (90%) down to about 0.05 L_{sun}
- $M_* = N(YSOs)*0.5 M_{sun}$
 - SFR = $M_*/2$ Myr (largest uncertainty)
- M_{cloud} from extinction of background stars
 - $\Sigma_{gas} = M_{cloud}/Area$
- M_{dense} from dust emission at millimeter
- Caveats
 - Miss more evolved PMS (no significant IR excess)
 - Results apply to last 2 Myr

How "Efficient" is Star Formation?

- Not very for the cloud as a whole
 - 2% to 5% of mass with $A_V > 2$ is in dense cores
 - (Enoch et al. 2007)
 - 3% to 6% is in stars
- Large variations in SF rate
 - Serpens is 360 times more productive than Cha III
 - Normalized to area, Serpens is 100 times Cha III
- Quite efficient in dense gas
 - Current TOTAL M_{*} similar to M_{dense}
 - Depletion time is 0.6 to 2.9 Myr

Ex-Gal Star Formation Prescriptions

- Kennicutt (1998)
 - $\Sigma_{SFR}(M_{sun} yr^{-1} kpc^{-2}) = 2.5x10^{-4} \Sigma^{1.4}_{gas}(M_{sun} pc^{-2})$
 - $\Sigma_{SFR}(M_{sun} yr^{-1} kpc^{-2}) = 6.3x10^{-3} \Sigma^{1.4}_{gas}(10 M_{sun} pc^{-2})$
- Bigiel et al. (2008)
 - $\Sigma_{SFR}(M_{sun} yr^{-1} kpc^{-2}) = 7.9x10^{-3} \Sigma^{1.0}_{mol}(10 M_{sun} pc^{-2})$
- Krumholz et al. (2009)
 - $\Sigma_{SFR} = f(\Sigma_{gas}, f(H_2), Z, clumping)$
 - Nearly linear with Σ_{mol} below ~ 100 M_{sun} pc⁻²
 - Steepens above 100 M_{sun} pc⁻²

Testing Locally

- Observing Clouds in the Milky Way
 - Advantage is good resolution
 - Ability to count stars
 - Not extrapolating from massive stars $(H\alpha)$
 - Disadvantage is good resolution
 - Hard to compare on scales ~ galaxies
 - Progress from large surveys with Spitzer, Herschel, mm telescopes

Averaged Over Whole Clouds

c2d and GB clouds, Heiderman et al. in prep.

Test on Smaller Scales?

Star formation mostly at high extinction Cloud average biased toward lower S_{gas}

- Count YSOs in contours of A_V
- YSOs can wander out of formation region
- Count only Class I, Flat
 - Use suitable lifetimes (~0.5 Myr each)
- Checking for fakes at low A_V

Within Each Cloud

Best fit, including upper limits: Slope = 2.3

Heiderman et al. in prep.

Similar Relation in Regions forming High Mass Stars

Green line is $\Sigma(YSOs) \sim \Sigma^2$ (gas) Red points are Class I (more likely to be in formation region) Gutermuth et al. in prep.

Lessons from Nearby Clouds

- $\Sigma_{SFR} \sim 10$ times prediction of relations for galaxies on average
- Variations from cloud to cloud factor of 100
- These regions are forming only low mass stars
 - Would not even be seen in most exgal SFR tracers
- On scales where SF actually happens...
 - Dependence on S_{mol} may be very strong
- SFR determined on sub-pc scales << exgal resolution

Summary

- Stars form mostly in clustered environments
 - Regions of high extinction, dense gas
 - About half in large (N>100) clusters
- Mass function may trace IMF of stars
- Timescales for Class 0 and I longer
- Shu inside-out collapse consistent, except
 - Luminosities imply accretion is episodic
- Efficiencies in clouds are low (3-6%)
 - Efficiencies in dense cores are high (>25%)
- Exgal prescriptions do not work locally

Embedded low-mass protostars

Boogert et al. 2004, 2007

- Abundances of some species similar within factor of 2 (e.g., CO₂)
- Significant variations (>10) for other species (e.g., CH₃OH, NH₃, OCN⁻)
- Evidence for NH₃ with high abundances (>10%) in some objects?
- First detection of CH₄ ice toward low-mass YSO's