Prospects for studies of the distant Universe in the warm era

Pieter van Dokkum, Asantha Cooray, Ivo Labbe, Casey Papovich, Daniel Stern

Role of IRAC at z>1

- · Unique wavelength regime:
 - At fixed redshift, can study longer rest-frame wavelengths
 - At fixed rest-frame wavelength, can study galaxies to higher redshifts
- Sensitivity
 - SEDs of normal galaxies peak at ~1.6 micron in rest-frame
 - Low background compared to ground-based NIR

- Abundance of obscured quasars
 (Lacy et al. 2004, Stern et al. 2005, Cool et al. 2006)
- Identification of galaxy clusters at 1<z<2
 <p>(Stanford et al. 2005, Brodwin et al. 2006)
- Identification of "red and dead" galaxies at z>2
 (Yan et al. 2004, Labbe et al. 2005)
- Stellar masses and ages of galaxies out to z~6
 (Eyles et al. 2005, Yan et al. 2005, Stark et al. 2007)
- Confirmation and characterization of galaxies at z~7.5 (Egami et al. 2005, Labbe et al. 2006)
- Possibly fluctuations induced by 1st light objects (Kashlinsky et al. 2005)

- Abundance of obscured quasars
 (Lacy et al. 2004, Stern et al. 2005, Cool et al. 2006)
- Identification of galaxy clusters at 1<z<2
 <p>(Stanford et al. 2005, Brodwin et al. 2006)
- Identification of "red and dead" galaxies at z>2
 (Yan et al. 2004, Labbe et al. 2005)
- Stellar masses and ages of galaxies out to z~6
 (Eyles et al. 2005, Yan et al. 2005, Stark et al. 2007)
- Confirmation and characterization of galaxies at z~7.5
 (Egami et al. 2005, Labbe et al. 2006)
- Possibly fluctuations induced by 1st light objects (Kashlinsky et al. 2005)

- Abundance of obscured quasars
 (Lacy et al. 2004, Stern et al. 2005, Cool et al. 2006)
- Identification of galaxy clusters at 1<z<2
 <p>(Stanford et al. 2005, Brodwin et al. 2006)
- Identification of "red and dead" galaxies at z>2
 (Yan et al. 2004, Labbe et al. 2005)
- Stellar masses and ages of galaxies out to z~6
 (Eyles et al. 2005, Yan et al. 2005, Stark et al. 2007)
- Confirmation and characterization of galaxies at z~7.5 (Egami et al. 2005, Labbe et al. 2006)
- Possibly fluctuations induced by 1st light objects (Kashlinsky et al. 2005)

Objects responsible for reionizing the Universe

- Abundance of obscured quasars
 (Lacy et al. 2004, Stern et al. 2005, Cool et al. 2006)
- Identification of galaxy clusters at 1<z<2
 <p>(Stanford et al. 2005, Brodwin et al. 2006)
- Identification of "red and dead" galaxies at z>2
 (Yan et al. 2004, Labbe et al. 2005)
- Stellar masses and ages of galaxies out to z~6
 (Eyles et al. 2005, Yan et al. 2005, Stark et al. 2007)
- Confirmation and characterization of galaxies at z~7.5
 (Egami et al. 2005, Labbe et al. 2006)
- Possibly fluctuations induced by 1st light objects (Kashlinsky et al. 2005)

Prospects in the warm era

- Nearly all results driven by channels 1 and 2, mostly from GOODS and SWIRE
- · Limited by depth, area, or both
 - Only ~10 objects at z~6, and 2 at z~7.5, with firm IRAC detections
 - Insufficient area for clustering and for study of rare objects

Prospects in the warm era

- Three pronged approach for studying high z universe
 - 1. Ultradeep: 250 hr depth, 0.04 sq deg (z=6-10)
 - 2. Deep: 20 hr depth, 2 sq deg (z=2-6)
 - 3. Wide: 120 s depth, 500 sq deg(clusters at z=1-2, high z quasars)
- All extend current datasets by at least an order of magnitude and enable qualitatively new science
- Together, programs characterize the build-up of stars and black holes from z~10 to z~1

1. An IRAC Ultradeep Field

- Strawman survey: 150 sq arcmin area with 250 hr depth (size of 1 GOODS field, >10x deeper)
- Total cost (including overheads) ~ 2500 hrs
- Main science goal is exploration of z>6 Universe

1. An IRAC Ultradeep Field

- Strawman survey: 150 sq arcmin area with 250 hr depth (size of 1 GOODS field, >10x deeper)
- Total cost (including overheads) ~ 2500 hrs
- Main science goal is exploration of z>6 Universe

49 hr depth in UDF yielded only 2 galaxies at z=7-8

1. An IRAC Ultradeep Field

- Strawman survey: 150 sq arcmin area with 250 hr depth (size of 1 GOODS field, >10x deeper)
- Total cost (including overheads) ~ 2500 hrs
- Main science goal is exploration of z>6 Universe
- Expected number of galaxies at >5_:
 - ~ 100 at 6.5<z<7.5
 - ~ 5 at 9<z<11
 - perhaps 1 or 2 at 12<z<14

1. An IRAC Ultradeep Field

- Drawbacks / limitations:
 - Confusion: not a hard limit, but leads to reduced efficiency as effective field gets smaller

Example of deblending

 JWST/NIRCAM factor of ~100 faster for galaxy surveys

2. GOODS depth over 2 sq deg

- GOODS fields are 2 x 10' x 15'; covered with Chandra, HST/ACS, and Spitzer/IRAC+MIPS
- · Despite success of GOODS, limited by area:
 - Cosmic variance very significant over ~10' fields
 - Too small for finding brightest galaxies at high z;
 e.g. only ~5 L>3L* galaxies expected at 5.5<z<6.5
 - Too small for clustering studies

2. GOODS depth over 2 sq deg

- GOODS fields are 2 x 10' x 15'; covered with Chandra, HST/ACS, and Spitzer/IRAC+MIPS
- · Despite success of GOODS, limited by area:
 - Cosmic variance very significant over ~10' fields
 - Too small for finding brightest galaxies at high z;
 e.g. only ~5 L>3L* galaxies expected at 5.5<z<6.5
 - Too small for clustering studies
- In last few years, fields of 0.25 2 sq degrees have been surveyed with HST, Chandra, Spitzer

2. GOODS depth over 2 sq deg

- Image multiple >0.25 sq deg area fields to GOODS depth of 20 hrs
- Most plausible fields:
 - UltraVISTA part of COSMOS (0.8 sq deg)
 - UKIDSS Ultra Deep Survey (0.7 sq deg)
 - EGS / AEGIS Strip (0.25 sq deg)
 - Extended CDFS (aka GEMS) (0.25 sq deg)
- Four fields have different and complementary legacy value; cost of doing all is ~7,500 hrs

2. GOODS depth over 2 sq deg

- Survey would enable broad range of science, and serve large part of community:
 - Detect 1000s of galaxies at 5<z<8, tens of 1000s at 2<z<5, and 1000s of AGNs
 - Accurate measurement of evolution of mass function and luminosity function
 - Relation between galaxy properties and the emerging large scale structure over 2<z<6
 - Bright z>6 galaxies: follow-up with existing and future telescopes, and JWST
 - Robust measurement of clustering signal in background fluctuations

3. SWIRE depth over 500 sq deg

- Rare objects such as clusters of galaxies and luminous quasars require very large areas
- SWIRE depth of 120 s sufficient to detect clusters
 (Brodwin et al 2006; Eisenhardt cluster program; also
 SPARCS survey by Wilson & Muzzin) and QSOs (e.g. Stern
 et al 2005)

Cluster at z=1.41, from Stanford et al 2005

3. SWIRE depth over 500 sq deg

- Rare objects such as clusters of galaxies and luminous quasars require very large areas
- SWIRE depth of 120 s sufficient to detect clusters (Brodwin et al 2006; Eisenhardt cluster program; also SPARCS survey by Wilson & Muzzin) and QSOs (e.g. Stern et al 2005)
- SWIRE covered 50 sq deg (in ~ 10 sq deg patches)

3. SWIRE depth over 500 sq deg

- Strawman survey: 500 sq deg to 120 s per pix depth
- Total cost ~ 4000 hrs
- Among the science returns:
 - $-\sim 1500$ clusters at 1<z<2 with masses >10 14 $M_{\text{sun}},$ for studying galaxy evolution and constraining cosmological parameters
 - High redshift quasars for studying reionization
 - Clustering of high redshift quasars will provide masses of their halos
 - May also be very good way to find Y dwarfs

Importance of near-IR data

- For all three surveys, the IRAC data in isolation have very little value
- · Near-IR data particularly important:
 - Photometric redshift determination
 - Measure Balmer and Lyman break
 - Deblending and accurate flux measurements of IRAC sources

IRAC versus ground-based K

- Galaxies at z>1 have K-[3.6] ≥ 0 in AB units
 - To match (e.g.) $K_{AB} = 25$, IRAC does not need to go fainter than [3.6] = 25
 - However, to match [3.6] = 25, one needs to go at least to K_{AB} = 25
- For typical NIR cameras on 4m telescopes, it takes ~
 20 x longer to reach same per-pixel AB depth as IRAC
- Hard to reach! Example: 288 hrs of VLT time in GOODS-South (twice the IRAC investment)

Implications for surveys

- Ultra-deep IRAC survey cannot be matched by ground-based NIR imaging – need ~700 orbits of HST/WFC3
- 2 degree survey depth can only be matched by 1000s of hrs of 4m time; already planned for part of COSMOS (UltraVISTA) and UKIDSS/UDS
- 500 degree survey depth also requires large investment of 4m time; e.g. VISTA Kilo Degree Survey

Given the large investment of Spitzer time, supporting data products MUST be public

Conclusions

- Three-pronged survey program would greatly advance study of galaxies at 1<z<10, AGN, and clusters at 1<z<2
- Other survey ideas briefly discussed in white paper (e.g., strong lensing, ultra-wide survey)
- Some time should remain available for small/medium programs, e.g.
 - Massive galaxy cluster at z=4
 - Lensed z=10 galaxy
 - Very special gamma-ray burst
- One or more surveys could be executed by SSC would allow community to focus on science

