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Abstract.
IRAC excels at detecting distant objects. Due to a combination of the shapes of the spectral

energy distributions of galaxies and the low background achieved from space, IRAC reaches greater
depth in comparable exposure time at 3.6 and 4.5µm than any ground- or space-based facility
currently can at 2.2µm. Furthermore, the longer wavelengths probed by IRAC enable studies of
the rest-frame optical and near-infrared light of galaxiesand AGN to much higher redshift than
is possible from the ground. This white paper explores the merits of different survey strategies
for studying the distant universe during the warm mission. Athree-tiered approach serves a wide
range of science goals and uses the spacecraft effectively:1) an ultra-deep survey of≈ 0.04 square
degrees to a depth of 250 hrs (in conjunction with an HST/WFC3program), to study the Universe at
7 < z < 14; 2) a survey of≈ 2 square degrees to the GOODS depth of 20 hrs, to identify luminous
galaxies atz > 6 and characterize the relation between the build-up of darkmatter halos and their
constituent galaxies at 2< z < 6, and 3) a 500 square degree survey to the SWIRE depth of 120 s,
to systematically study large scale structure at 1< z < 2 and characterize high redshift AGN. One
or more of these programs could conceivably be implemented by the SSC, following the example
of the Hubble Deep Field campaigns. As priorities in this field continuously shift it is also crucial
that a fraction of the exposure time remains unassigned, thus enabling science that will reflect the
frontiers of 2010 and beyond rather than those of 2007.
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1. INTRODUCTION

Infrared observations are crucial for the study of distant galaxies. While blue star form-
ing galaxies can be routinely identified toz ∼ 6 and beyond using optical selection tech-
niques and follow-up spectroscopy (e.g., Steidelet al. [1, 2, 3], Kodairaet al. [4], Ouchi
et al. [5], Starket al. [6], Dow-Hygelundet al. [7]), measuring their masses and star for-
mation histories requires access to their rest-frame optical light (see, e.g., Shapleyet al.
[8], Papovichet al. [9]). Furthermore, it has become clear that optical samplesmiss a
substantial fraction of the high redshift galaxy population. Near-infrared surveys have
discovered substantial numbers of UV-faint red galaxies (Daddi et al. [10], McCarthy
et al. [11], Labbéet al. [12], Franxet al. [13]) and it appears that these objects domi-



FIGURE 1. ExpectedK − [3.6] color of galaxies versus redshift from Bruzual and Charlot [16] stellar
population synthesis models. The bluest dust-free galaxies have observedK − [3.6] colors> 0 at most
redshifts> 1 (blue solid line). Dusty galaxies atz > 1 (blue dotted line) and galaxies with old stellar
populations atz > 4.5 (red solid and dash-dotted line) have much redder colors, reachingK − [3.6] ∼ 2,
which implies that they aremuch easier to detect with IRAC than with ground-based near-infrared
cameras.

nate thez = 2−3 cosmic stellar mass density at the high-mass end (van Dokkum et al.
[14], Marchesiniet al. [15]). In addition, surveys at mid-infrared, sub-mm, and radio
wavelengths have found highly obscured galaxies, which emit the bulk of their lumi-
nosity at IR wavelengths (e.g., Bargeret al. [17], Blain et al. [18]) and may contribute
substantially to the global cosmic star formation rate.

The infrared capabilities of the Spitzer Space Telescope have greatly enhanced our
understanding of the high redshift Universe. MIPS and IRS are rapidly advancing
our knowledge of IR luminous galaxies, such as obscured Active Galactic Nuclei
(AGN) and starburst galaxies harboring large amounts of dust (see, e.g., Marleauet al.
[19], Dole et al. [20], Yan et al. [21], Houck et al. [22], Le Floc’h et al. [23], Frayer
et al. [24], Papovichet al. [25]). However, MIPS is not able to study “normal” galaxies
out to very high redshift: at redshifts as low asz ∼ 3 a galaxy has to have a star forma-
tion rate exceeding∼ 200M⊙ yr−1 to be detectable at 24µm even in the deepest (10 hr)
images, and many times higher to be detected at higher redshift or longer wavelengths.

IRAC, by contrast, excels at detecting distant galaxies of any kind, due to a combina-
tion of the shape of their spectral energy distributions (SEDs) and the low background
achieved from space. As illustrated in Fig. 1 the bluest galaxies atz > 1 have aK −3.6
color of ∼ 0 in AB units. As IRAC can reach the same AB depth as a ground-based
4m telescope about 20 times faster, Fig. 1 implies that anyz > 1 object detected with
a 4m telescope in theK band can be detected with IRAC in 5 % of the exposure time.
For intrinsically red sources this difference is, of course, even larger: dusty galaxies at



any redshift and old galaxies beyondz ∼ 4.5 typically haveK − [4.5] ∼ 2, and for these
objects IRAC is a factor of 800 faster than a ground-based 4m telescope! The differ-
ence in depth achievable from the ground and from space is illustrated in Fig. 2, which
compares a region of the CDF-South field inK to the corresponding 3.6µm image. The
(VLT) near-IR data in CDF-South are among the best availableanywhere in the sky, and
yet they are obviously not well matched in depth to the IRAC data.

FIGURE 2. Comparison of ground-basedK (left) with Spitzer 3.6µm (right), for a 1.5′× 1.5′ patch
in the GOODS CDF-South field. TheK band data were taken with ISAAC on the VLT and are of very
high quality. Per-pixel exposure times were 7 hrs inK and 20 hrs in the 3.6µm band. Despite a very large
investment of VLT time in this field (double that of IRAC due tothe smaller field of view, for a total of
288 hrs as of writing) theJHK depths in GOODS South are poorly matched to the IRAC depth.

For studies of the distant Universe, the key advance allowedby IRAC is not simply
survey speed, but the abilitiy to study the rest-frame optical and near-infrared light of
galaxies and AGN to much higher redshift than is possible from the ground. As an
example, atz = 7 the K band samples the rest-frame UV light of galaxies, which is
dominated by short-lived O and B stars, whereas the IRAC 4.5µm band samples the
rest-frameV band, which provides information on Solar type stars and constrains the
age and mass of the bulk of the stellar population.

Major achievements with IRAC include: measurements of the abundance of obscured
QSOs (Lacyet al. [26], Treisteret al. [27], Sternet al. [28], Cool et al. [29]); identi-
fication of galaxy clusters and groups in the redshift range 1< z < 2 (Brodwin et al.
[30]); identification of massive galaxies with very low starformation rates atz = 2−3
(Yan et al. [31], Labbéet al. [32]); determination of stellar ages and masses of galaxies
out to z ∼ 6 (Eyleset al. [33], Yan et al. [34], Starket al. [6]); confirmation and char-
acterization of galaxies atz ∼ 7.5 (Egamiet al. [35], Labbéet al. [36]); and possibly
the detection of fluctuations induced by first-light galaxies containing a large fraction of
population III stars (Kashlinskyet al. [37]).

Nearly all these results were driven by the short wavelengthchannels of IRAC, as
they are the most sensitive. In the warm mission, it will be possible to extend these
initial studies to wider areas and larger samples, as well asto fainter luminosities and



higher redshifts. Furthermore, very large programs will enable entirely new science, in
particular when combined with planned extensive public near-infrared imaging surveys
in the next five years.

Here we describe a three-tiered survey program which could be conducted over the
course of the warm mission. The surveys comprise ultra-deepobservations in a relatively
small area, a deep (20 hr per pixel) program over a 2 square degree area, and a shallow
(120 s per pixel) program over a 500 square degree area. Theseprograms serve as
examples of science that can be done during the warm mission;some other options
are briefly discussed in a separate Section.

2. AN ULTRA-DEEP SURVEY

At redshifts abovez ∼ 5 the Balmer break shifts beyond the observedK band, and IRAC
is the only instrument until JWST which can provide reliableages and masses of very
high redshift galaxies. As an illustration of the power of IRAC at very high redshifts, Fig.
3 shows 3.6 and 4.5µm imaging ofz = 7−8 objects identified in the Hubble Ultra Deep
Field. The integration time of≈ 46 hrs per pixel was sufficient to robustly detect two
of the four objects, providing first estimates of the masses,stellar ages, star formation
rates, and dust content of these early objects (Labbéet al. [36]). Similarly, Egamiet al.
[35] used IRAC to constrain the stellar population of a lensed z ∼ 7 galaxy.

FIGURE 3. IRAC imaging ofz-dropouts in the Hubble Ultra Deep Field, from Labbéet al. [36]. In
≈ 46 hrs two of these faint z-dropouts are detected with IRAC, and two are marginally detected. To
characterize thez ∼ 7+ galaxy population with IRAC longer integration times and surveys over larger
fields are needed.



The galaxy population atz ∼ 7 may be responsible for reionizing the universe and
is of vital importance for understanding feedback and metalproduction in the earliest
stages of galaxy formation. Much deeper IRAC observations over a much wider area
than the Hubble Ultra Deep Field are needed to systematically survey the Universe at this
important juncture in its history. Extrapolating from the Bouwenset al. [38], Bouwens
and Illingworth [39] and Labbéet al. [36] results, and taking the reduced area due to
source confusion into account (see below), a survey over∼ 150 arcmin2 with a per-
pixel integration time of∼ 250 hrs is needed to obtain a sample of∼ 100 galaxies at
6.5 < z < 7.5.with > 5σ IRAC photometry. The total time required for this survey is
∼ 2500 hrs.1

An ultra-deep survey would also offer the exciting prospectof a first exploration of
the z ∼ 10 Universe, well in advance of JWST. The depth achieved is∼ 0.04µJy at
3.6µm (∼ 27.4 AB), or MB ∼−22.6 atz = 10. The expected number ofz ∼ 10 objects
is obviously very uncertain, but based on results toz ∼ 7 one may conservatively expect
to detect a handful of galaxies at 9< z < 11 (J-dropouts), and∼ 1 object at 12< z < 14
(H-dropouts, selected on the basis of their blue[3.6]− [4.5] color and non-detection
in HST/WFC3H).2 IRAC photometry of galaxies in this redshift range providesvery
strong constraints on the formation of the first stars. Ifz ∼ 10 galaxies experienced their
first star formation at this redshift, theirK through 4.5µm SEDs would be power laws
(with the power law index an indication of dust and metal content); if, on the other hand,
these objects show a pronounced break between the 3.6 and 4.5µm band their spectra
have a significant contribution of A stars and star formationmust have started several
100 Myr earlier, atz ∼ 20.

An ultra-deep campaign also offers the possibility of placing limits on the frequency
and nature of pair-creation SNe. These SNe are thought to be the end states of very
massive (150 – 200M⊙), metal poor stars which may have existed in the early Universe
(Abel et al. [40], Bromm et al. [41]). The peak brightnesses of such SNe are very
uncertain, and could range from 0.01−1µJy atz = 10 (Scannapieco [42]). The rates are
also very uncertain, with estimates ranging from 1 – 100 deg−2 yr−1. With an optimized
observing cadence the proposed survey probes the low peak brightness, high rate regime,
whereas a wide, shallower survey probes the high peak brightness, low rate regime.

As illustrated in Fig. 3 it is crucial to have supporting near-infrared data that is well
matched to the Spitzer depth – in fact, the IRAC data in isolation have very limited
value. The near-IR data are needed to identify the high redshift galaxies (by pinpointing
their redshifted Lyman break at 1216 Å) and to obtain accurate photometry in the IRAC
images (by iteratively modeling the source distribution).Obtaining sufficiently deepK
band data is extremely difficult, even if one focuses on the bluest galaxies only. Using the
“factor of 20” rule of thumb a 250 hr IRAC depth implies a per-pixel integration time of
5000 hrs on a 4m, or 1000 hrs on a 8-10m class telescope. Fortunately it will be possible
to reach the required depth inJ andH with HST/WFC3. Based on existing NICMOS
data in the Hubble Ultra Deep Field and the expected sensitivity of WFC3,∼ 9 orbits are
needed to match the depth of a 250 hr IRAC observation. To cover an area of 150 arcmin2

1 A 3×3 pointing mosaic; total survey times in this document include overheads.
2 These numbers are somewhat conservative as they assume veryblue SEDs redward ofλrest∼ 1400 Å.



in J andH would require about 700 orbits. Given the importance of supporting near-IR
data an ultra-deep IRAC program should probably only be undertaken in coordination
with an investment of HST time of this order.

A drawback to an ultra-deep field is the limited efficiency of IRAC at faint flux
levels due to crowding. At the GOODS depth only∼ 30 % of pixels are uncontaminated
background, that is, not affected by the wings of the PSFs of identified sources. Source
confusion is not a hard limit, and can be greatly reduced withthe use of a prior image
with better resolution (typically aK-band image). However, confusion reduces the
efficiency of IRAC observations in two ways: the fraction of the field in which good
photometry can be done steadily diminishes when going deeper, and the S/N increases
slower than

√
t due to the steadily rising “background” of PSF wings.3 At the time of

writing, no results are yet available from the deepest – 100 hr per pixel – region that has
been obtained with IRAC so far (GOODS HDF-N); when these results are in it will be
easier to quantify the effects of crowding with integrationtimes> 50 hrs per pixel.

Another drawback is that this type of science in particular can be done with much
greater efficiency with JWST. There is little doubt that JWSTwill image GOODS-sized
fields (and larger), and that the depth of IRAC data can be surpassed very rapidly indeed:
quite apart from its vastly superior PSF (0.1′′−0.2′′ at 3−5 µm) the required exposure
time to reach a given point-source depth is about three orders of magnitude shorter.
Assuming a typical high redshift galaxy size of 0.5′′ (1.0′′) FWHM and factoring in the
respective detector sizes, JWST/NIRCam can cover small areas about 200 (40) times
faster than Spitzer/IRAC. Although this may limit the legacy value of an ultra-deep
Spitzer survey, such considerations have to be weighed against the long lead time for
JWST and the uncertainties associated with any space mission.

3. A DEEP SURVEY OVER 2 DEG2

Although much larger than the original Hubble Deep Fields, the 10′×15′ GOODS fields
(Dickinson et al. [43]) are too small to provide a fully representative sampleof the
distant Universe: the correlation lengthr0 of massive galaxies is∼ 8h−1

100Mpc (roughly
independent of redshift), which is∼ 8′ at z = 2 (e.g., Daddiet al. [10], Somervilleet al.
[44], Adelbergeret al. [45], Quadriet al. [46]). The GOODS fields are also too small for
clustering studies (except for populations with smallr0), and for studies of the relation
between galaxy properties and density. The importance of sampling large volumes at
high redshift is dramatically illustrated by the identification of structures of several tens
of Mpc up toz ∼ 6 (e.g., Ouchiet al. [5]).

Furthermore, the relatively small size of GOODS does not sample the bright end of
the luminosity function well, which means that the brightest galaxies at high redshift are
missed even if the depth is sufficient to detect them. As an example, the Bouwenset al.
[38] z = 6 luminosity function implies that only≈ 5 L > 3L∗ galaxies at 5.5 < z < 6.5

3 For example, data in the Hubble Ultra Deep Field (≈ 46 hrs) suggests that the depth increase compared
to 1 hr is only 1.7 mag instead of the 2.1 mag expected from

√
t, even after reducing the source confusion

using available NICMOS near-IR data (Labbéet al. [36]).



are expected in a 150 arcmin2 area. Although these bright examples may not contribute
greatly to the total luminosity density at these early epochs (see, e.g., Bouwenset al.
[38]), they may be accessible for morphological studies with WFC3 and spectroscopic
follow-up with 20m – 30m telescopes and JWST.

Motivated by similar concerns, several programs are underway to extend the area
covered by deep ground- and space-based observations. Examples are the 30′ × 30′

Extended CDF-South (E-CDFS, aka the GEMS field); the 50′×50′ UKIDSS Ultra Deep
Survey (aka the Subaru/XMM deep field); the 10′×60′ Extended Groth Strip; and the
1.4◦× 1.4◦ COSMOS field. All these fields have excellent supporting data, although
different fields have different strengths. Current IRAC coverage of these fields varies.
The E-CDFS and the Groth Strip have both been covered with IRAC to ∼ 3 hr depth.
The UDS will be done with IRAC to∼ 0.7 hr depth in Cycle 4, and the COSMOS field
has relatively shallow (∼ 0.3 hr) IRAC coverage over the entire field.

Given the large investments of ground- and space-based observatories in these fields
it seems likely that they will continue to play important roles in studies of the distant
Universe. New instrumentation on existing telescopes (e.g., multi-object near-IR spec-
trographs on 10m class telescopes and WFC3 on HST) will likely be utilized in these
fields, as well as future telescopes (Herschel, ALMA, 20-30mtelescopes, JWST). There
is therefore a strong legacy argument to be made for coveringseveral or all of these
fields with substantially deeper 3.6 and 4.5µm imaging than is currently available.

The availability of near-IR imaging that is well matched to the IRAC depth is crucial
for correctly measuring the IRAC fluxes and for determining photometric redshifts.
Interestingly,none of the fields mentioned currently has near-IR coverage approaching
the depth achieved in a few hours (per pixel) with IRAC. However, this situation will
change in the near future thanks to ambitious public surveyswith new large field near-
IR imagers on 4m class telescopes. WFCAM on UKIRT will cover the Subaru/XMM
deep field to a 5σ AB depth ofK = 25 (with additionalJ andH) in the context of the
UKIDSS Ultra Deep Survey (Dyeet al. [47]). UltraVISTA (an approved public survey
on the soon to be commissioned VISTA telescope) aims to cover1/3 of the COSMOS
field to a depth ofK = 24.5 and 1/3 to a depth ofK = 25.6 (with additionalY , J,
andH). An IRAC depth of 20 hrs per pixel is well matched to theK band depths of
UKIDSS/UDS and UltraVISTA, in the sense that everyK-detected source will have a
3.6µm > 5σ counterpart.

Covering the other two fields should also be a high priority. Their areas are small
compared to the UKIDSS/UDS and COSMOS UltraVISTA fields — which implies that
the investment with Spitzer would be relatively modest — andthey offer qualitatively
different legacy value. Covering only the 0.7 deg2 UDS field and the 0.8 deg2 COS-
MOS/UltraVISTA field to the GOODS depth would cost∼ 6,000 hrs, whereas covering
all four fields would require∼ 7,500 hrs.4

The area and depth of such a≈ 2 deg2 survey should be sufficient to detect 1000s of
galaxies at 5< z < 8. At these redshifts IRAC uniquely samples the rest-frame optical
emission beyond the Balmer break, allowing measurements ofstar formation histories
and stellar masses (see, e.g., Labbéet al. [36], Starket al. [6]). The intrinsic brightness

4 In practice, it may be beneficial to vary the exposure time within a field or between fields somewhat.



of these objects implies that they can be observed spectroscopically, either with existing
telescopes or with future 20m-30m telescopes and/or JWST. In combination with the
ultra-deep survey discussed above, which samples the luminosity function atL < L∗, the
evolution of the rest-frame optical luminosity function and the stellar mass function can
be accurately measured at 5< z < 8.

Furthermore, the survey will characterize the relation between galaxies and the emerg-
ing large scale structure over the redshift range 2< z < 6. GOODS-depth IRAC observa-
tions over 2 deg2 would allow characterization of the stellar populations ofseveral tens
of thousands of red and blue galaxies in this redshift range to low stellar mass limits (e.g.,
∼ 1010M⊙ at z = 3) and accurately determine their density and evolution in relation to
their environment. The combination of clustering and stellar population measurements
is an extremely powerful tool to determine the properties and evolution of galaxies as
a function of halo mass (e.g., Adelbergeret al. [45], Leeet al. [48], Quadriet al. [46]),
thus linking the hierarchical build-up of dark matter halosto the formation and evolution
of their constituent galaxies.

Deep IRAC observations over such a large area also offer intriguing possibilities
for studies of faint galaxies below the detection threshold. If first-light galaxies during
reionization were to contain a substantial fraction of massive population III stars then
their redshifted rest-frame UV emission will be present at IR wavelengths. While none
of these sources will be individually detected even in the ultra-deep survey described
earlier, the unresolved emission will be clustered (as these sources are expected to trace
the large-scale structure atz > 7) and this clustering component can be extracted to the
extent that any correlated systematics and noise sources are understood. A first detection
of such a clustered component in the unresolved IRAC pixels in the first-look survey was
interpreted as evidence for massive population III stars (Kashlinskyet al. [37]), although
this result is somewhat controversial (Coorayet al. [49]). A deep survey over 2 deg2 will
make it possible to accurately measure the clustering strength of the undetected sources,
allowing a direct comparison to model predictions for the clustering of first-light objects.

4. A SHALLOW SURVEY OVER 500 DEG2

Areas of several square degrees are sufficient to obtain representative samples of the
Universe atz ≤ 1, but they are not large enough for studies of extreme objects such as
luminous quasars or high-redshift galaxy clusters. Although the instantaneous field-of-
view of IRAC is small, it can do very efficient mapping over large areas of sky; as an
example, the SWIRE survey covered 49 deg2 to a depth of 120 s. An order of magnitude
larger survey than SWIRE would take∼ 4000 hrs and serve a wide range of science
goals.

High redshift quasars can be efficiently identified by their relatively flat mid-IR SEDs
and their extremely red optical – mid-IR colors (Coolet al. [29], Sternet al. [50]). The
clustering strength of these objects will constrain the masses of their dark matter halos,
and spectroscopic follow-up will provide information on the build-up of supermassive
black holes and the interplay of star formation and nuclear activity in the earliest phases
of galaxy formation. Quasars also provide useful probes of the intervening universe;
indeed, the most distant quasars provide some of our most powerful tools for probing



the epoch of reionization (Beckeret al. [51]).
Galaxy clusters can easily be identified out toz ∼ 2 with IRAC in integration times

as short as a few minutes (see Eisenhardtet al. [52] and Fig. 4). Based on the WMAP3
cosmology, a 500 deg2 survey to the SWIRE depth would provide∼ 1500 clusters at
1 < z < 2 with masses> 1014M⊙, and a handful of extremely massive objects with
masses> 5× 1014M⊙. The evolution of galaxies in these clusters provides informa-
tion on the fate of the earliest objects that formed in the Universe, and the observed
mass-dependent evolution of the abundance of clusters over1 < z < 2 provides strong
constraints on cosmological parameters (particularlyw).

FIGURE 4. Color composite ofB, I, and IRAC 4.6µm images of a galaxy cluster atz = 1.41, from
Stanfordet al. [53]. The ground-basedB andI images required several hours of exposure time on a 4m
telescope, but the integration time for the IRAC 4.5µm image was only 90 seconds!

IRAC 3.6 and 4.5µm data alone can provide a crude redshift estimate, as the
[3.6]− [4.5] color fairly cleanly separates galaxies with redshifts below or above 1 (see
Fig. 5). However, the returns from this survey will be greatly enhanced when it is per-
formed in an area, or areas, of sky with existing or planned ancillary data. Examples
of such areas are the South Pole Telescope’s SZ survey, and the fields imaged by the
near-IR VISTA Kilo Degree Survey (KIDS). The combination ofthese data will not just
allow detection of the clusters, but also enable redshift and mass estimates.



FIGURE 5. The observed[3.6]− [4.5] colors of galaxies versus redshift in the GOODS-south field.The
points show a sample ofK-selected galaxies (Wuytset al. in prep). The tracks show the envelope of colors
spanned by stellar population models with a range of dust attenuations. A simple cut only in[3.6]− [4.5]
can efficiently isolate galaxies atz > 1 regardless of SED shape.

We note that wide-area, shallow surveys in high latitude fields could also prove useful
for Galactic programs, most notably for detecting and characterizing the coldest brown
dwarfs (e.g., Sternet al. [50]). Objects cooler than about 700 K, so-called “Y dwarfs”,
must exist. Objects with inferred masses down to≈ 5MJup have been identified in star-
forming regions and, according to theoretical models, dwarfs less massive than 30MJup
with ages> 4 Gyr should haveT < 600 K. However, none have been found to date. This
is primarily because their SEDs peak at≈ 4.5µm (e.g., Burrowset al. [54]), making
them very faint at ground-based optical through near-IR wavelengths. For instance, a
600 K brown dwarf could only be detected in the 2MASS PSC to about 1 pc. In contrast,
it would be detectable in a 120 sec IRAC≈ 4.5µm image out to about 50 pc.

5. OTHER PROGRAMS

We consider the three-tiered approach outlined above an excellent starting point for
designing observational programs for studies of the distant Universe in the warm era.
Many other survey programs could, of course, be considered,and we briefly discuss
several alternatives here.



5.1. A Medium Deep Survey Over Several 10s of deg2

There is a conspicuous gap in the three surveys discussed in this document, as we
jumped from a 20 hr depth over several deg2 to a 120 s depth over 100s of deg2. A
survey over several 10s of deg2 to a∼ 1 hr depth would require a similar investment as
each of the surveys discussed in more detail in the preceeding Sections. This territory is
out of reach of JWST and a unique niche for Spitzer in the warm era.

This committee failed to come up with a broadly defined, high impact science case
for this type of survey, but that may simply reflect the biasesand preconceptions of its
members. A survey of this type would map large scale structure atz = 2−4 over a very
wide area, which could lead to new constraints on the growth of dark matter halos and
perhaps cosmology. Thanks to the large number of galaxies that would be observed it
would also be possible to split the sample into many bins, andstudy galaxy evolution as
a function of luminosity, mass, color, AGN-activity, and size.

5.2. An Extremely Wide Survey of 1000s of deg2

It may seem odd to consider using a 5′×5′ imager to cover areas requiring hundreds
of thousands of pointings. Nevertheless, the unique wavelength regime and sensitivity of
IRAC, combined with the large amount of time that is potentially available in the warm
era, warrant a discussion of this question.

An ultra-wide survey will identify the most extreme objectsin the Universe, such
as very luminous quasars and galaxy clusters with masses∼ 1015M⊙. However, the
high overheads associated with very short integrations make such a program either
very inefficient or extremely costly. The spacecraft overheads are such that they start
to dominate over the on-sky time for integration times per pointing significantly shorter
than∼ 100 s. As an example, a survey of 125 square degrees with a 120 sexposure time
(comprising 4 dithered 30 s exposures) takes about 1000 hrs.A survey of 2500 square
degrees with a 6 s exposure time (comprising 3 dithered 2 s exposures) would have the
same total on-sky integration time, but cost more than 6000 hrs due to greatly increased
overheads.

Taking 120 s exposure time as a minimum, covering 2000 squaredegrees would be
extremely costly as it would require 16,000 hours. Such a large expenditure may be dif-
ficult to justify given the somewhat limited additional science that can be accomplished
above and beyond the 500 deg2 scenario discussed earlier.

5.3. Gravitationally Lensed Galaxies

Gravitational lensing by foreground clusters allows the study of high redshift galaxies
fainter than the limits achievable in unmagnified fields (e.g., Ellis et al. [55], Starket al.
[56]), and detailed analysis of intrinsically more luminous galaxies (e.g., Pettiniet al.
[57]). The gain in S/N is substantial: the exposure time needed to reach a given lensing-
corrected limiting magnitude decreases asA−2 (for point sources), with the lensing



amplificationA reaching values of 20 in extreme cases.
This technique has great potential, although there are somedrawbacks: the small

volume that is sampled at high redshift (as the relevant region is limited to a∼ 1′

diameter annulus whose lensing-corrected area decreases with A), the requirement that
the mass distribution in the inner parts of the cluster can beadequately modeled (to
correct the measured properties for the effects of lensing), and crowding. The latter
aspect is particularly problematic for IRAC, due to its large PSF compared to the
distances between galaxies in the central parts of clusters.

IRAC has already yielded interesting results in this area: Egamiet al. [35] report the
detection of a significant Balmer break in a previously identified lensedz ∼ 6.7 galaxy,
based on 3.6 and 4.5µm IRAC data of the well-studied cluster Abell 2218. A program
is currently underway to systematically image 30 lensing clusters with IRAC, and it may
be very interesting to extend this type of work in the warm era.

5.4. The Stellar Populations of z = 10 Galaxies

Although these things are difficult to predict, it seems likely that WFC3 on HST,
VISTA, HAWKEYE on the VLT, or some other new capability will identify a robust
sample ofJ band dropouts in the near future (see Bouwenset al. [58]). IRAC imaging
of these objects will both confirm them (by establishing whether they have a blue
continuum redward of Lyα) and constrain their stellar populations by measuring the
strength of the redshifted Balmer break (which falls between the 3.6 and 4.5µm bands
at this redshift). We note that extremely deep IRAC imaging may already be available if
the objects are found in a combined WFC3/IRAC survey, as advocated above.

5.5. Future Priorities

The program described in the preceeding paragraph is an example of science that can-
not currently be planned (although anticipated), and it is almost certain that many other
exciting possibilities will emerge during the remaining lifetime of Spitzer. Such future
programs can be large surveys, but could also be small, very high impact observations
of special objects, special sky areas, or time-variable objects (e.g., az = 10 gamma-ray
burst).

It is crucial that a fraction of the time available in the warmperiod will remain
unassigned, to accomodate the shifting frontiers in the field. However, there will be
limitations imposed by the anticipated reduction in user support. It may be possible
to have a TAC process twice during the 5 year warm mission (rather than yearly) to
assign remaining survey time and to accomodate a limited number of small, high-impact
programs which do not require a large support effort on the part of the SSC.



6. CONCLUSIONS

The end of Spitzer’s cryogenic lifetime will leave its most sensitive and versatile capa-
bility for studying the distant Universe intact, enabling very ambitious survey programs
addressing a wide range of science. Nearly anything that is done in the warm mission
will explore unique parameter space, as there is no competitive instrument in this wave-
length regime until JWST. Among the various possibilities,we feel that the three-tiered
approach outlined in this document would extend currently available samples by at least
an order of magnitude, enable qualitatively new science, and serve a wide community.
The survey parameters are summarized in Table 1.

TABLE 1
Recommended Surveys

Area Depth Total time Fields Main science drivers

150 arcm2 250 hr ∼ 2500 hr TBD galaxies atz = 7−14
2 deg2 20 hr ∼ 7500 hr COSMOS, UDS, bright galaxies atz > 6

EGS, E-CDFS AGN atz = 1−7+
clustering atz = 2−6

500 deg2 120 s ∼ 4000 hr TBD quasars toz ∼ 7
galaxy clusters at 1< z < 2

Chosing survey fields is a charged subject, as several large groups in the high redshift
community have invested significant effort and resources inparticular areas of the sky.
This document leaves this issue open for the ultra-deep and shallow surveys, as there
are no fields that can be easily identified as superior to all others. Distributing these
surveys may also be an option, e.g., covering two widely separated 75 arcmin2 fields in
the ultra-deep survey rather than a single 150 arcmin2 area.

However, we are explicit about the fields that can be covered in the deep 2 deg2

survey. Despite the large investment of IRAC time that wouldbe required, we believe a
case can be made for covering all four well-studied> 0.25 deg2 fields. Each of these
fields offers qualitatively different legacy value: the UDSand COSMOS fields will
have the best near-IR coverage, the EGS has the best spectroscopy, a lower mid-IR
background than the equatorial fields, and is well placed forNorthern telescopes, and the
E-CDFS has very low mid-IR background and is ideally placed for Chilean telescopes
(including ALMA). These four fields have been vetted for their legacy value by many
time allocation committees for ground- and space-based facilities, and one may question
whether it is sensible to do that yet again.

An important consideration in this context is not just the quality of the supporting
data, but their access. The survey programs that are considered in this document require
such a large investment of Spitzer time that a level playing field is absolutely crucial. A
field should therefore only be observed if access to crucial supporting data (e.g., near-IR
imaging) is completely unrestricted. This would be an extension of the usual process,
where proposers use their (often partially proprietary) data to argue for a certain survey
strategy or sky area, and then promise to make the space-based data publicly available
in reduced form.



The TAC process is also unusual, in the sense that the size of the envisioned proposals
will exceed even the largest programs that have been executed on space observatories
to date. It is unlikely that proposers will have a chance to revise their proposals for
a future round, as a large fraction of the available time overthe entire warm mission
may be reserved in a single proposal round. TACs inevitably vary in their composition,
priorities, and expertise, and special care needs to be taken to ensure that the best science
is selected for this unique opportunity.

In practice it may be desirable to have the SSC implement one or more of the TAC-
approved surveys, following the example of the various Hubble deep field campaigns.
This will capitalize on the experience and expertise of the SSC staff, ensure a timely
distribution of reduced data, and allow the community to focus their efforts on the
science enabled by these surveys rather than their execution.
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